Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biosens Bioelectron ; 215: 114580, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2311736

RESUMO

Rational detection of syndrome coronavirus 2 (SARS-CoV-2) is crucial to prevention, control, and treatment of disease. Herein, a dual-wavelength ratiometric electrochemiluminescence (ECL) biosensor based on resonance energy transfer (RET) between g-C3N4 nanosheets and Ru-SiO2@folic acid (FA) nanomaterials was designed to realize ultrasensitive detection of SARS-CoV-2 virus (RdRp gene). Firstly, the unique g-C3N4 nanosheets displayed very intense and stable ECL at 460 nm, then the triple helix DNA was stably and vertically bound to g-C3N4 on electrode by high binding affinity between ssDNA and g-C3N4. Meanwhile, trace amounts of target genes were converted to a large number of output by three-dimensional (3D) DNA walker multiple amplification, and the output bridged a multifunctional probe Ru-SiO2@FA to electrode. Ru-SiO2@FA not only showed high ECL at 620 nm, but also effectively quenched g-C3N4 ECL. As a result, ECL decreased at 460 nm and increased at 620 nm, which was used to design a rational ECL biosensor for detection of SARS gene. The results show that the biosensor has excellent detection sensitivity for RdRp gene with a dynamic detection range of 1 fM to 10 nM and a limit of detection (LOD) of 0.18 fM. The dual-wavelength ratio ECL biosensor has inestimable value and application prospects in the fields of biosensing and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , COVID-19 , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , DNA , Técnicas Eletroquímicas/métodos , Transferência de Energia , Ácido Fólico , Humanos , Limite de Detecção , Medições Luminescentes/métodos , Nanoestruturas , RNA Polimerase Dependente de RNA , Rutênio , SARS-CoV-2/genética , Dióxido de Silício
2.
Environ Res ; 223: 115419, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2220678

RESUMO

BACKGROUND: There is wide, largely unexplained heterogeneity in immunological and clinical responses to SARS-CoV-2 infection. Numerous environmental chemicals, such as persistent organic pollutants (POPs) and chemical elements (including some metals, essential trace elements, rare earth elements, and minority elements), are immunomodulatory and cause a range of adverse clinical events. There are no prospective studies on the effects of such substances on the incidence of SARS-CoV-2 infection and COVID-19. OBJECTIVE: To investigate the influence of blood concentrations of POPs and elements measured several years before the pandemic on the development of SARS-CoV-2 infection and COVID-19 in individuals from the general population. METHODS: We conducted a prospective cohort study in 154 individuals from the general population of Barcelona. POPs and elements were measured in blood samples collected in 2016-2017. SARS-CoV-2 infection was detected by rRT-PCR in nasopharyngeal swabs and/or by antibody serology using eighteen isotype-antigen combinations measured in blood samples collected in 2020-2021. We analyzed the associations between concentrations of the contaminants and SARS-CoV-2 infection and development of COVID-19, taking into account personal habits and living conditions during the pandemic. RESULTS: Several historically prevalent POPs, as well as arsenic, cadmium, mercury, and zinc, were not associated with COVID-19, nor with SARS-CoV-2 infection. However, DDE (adjusted OR = 5.0 [95% CI: 1.2-21]), lead (3.9 [1.0-15]), thallium (3.4 [1.0-11]), and ruthenium (5.0 [1.8-14]) were associated with COVID-19, as were tantalum, benzo(b)fluoranthene, DDD, and manganese. Thallium (3.8 [1.6-8.9]), and ruthenium (2.9 [1.3-6.7]) were associated with SARS-CoV-2 infection, and so were lead, gold, and (protectively) iron and selenium. We identified mixtures of up to five substances from several chemical groups, with all substances independently associated to the outcomes. CONCLUSIONS: Our results provide the first prospective and population-based evidence of an association between individual concentrations of some contaminants and COVID-19 and SARS-CoV-2 infection. POPs and elements may contribute to explain the heterogeneity in the development of SARS-CoV-2 infection and COVID-19 in the general population. If the associations are confirmed as causal, means are available to mitigate the corresponding risks.


Assuntos
COVID-19 , Poluentes Ambientais , Rutênio , Humanos , COVID-19/epidemiologia , Poluentes Orgânicos Persistentes , SARS-CoV-2 , Estudos Prospectivos , Tálio
3.
J Enzyme Inhib Med Chem ; 37(1): 2158-2168, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1978145

RESUMO

Zinc pyrithione (1a), together with its analogues 1b-h and ruthenium pyrithione complex 2a, were synthesised and evaluated for the stability in biologically relevant media and anti-SARS-CoV-2 activity. Zinc pyrithione revealed potent in vitro inhibition of cathepsin L (IC50=1.88 ± 0.49 µM) and PLPro (IC50=0.50 ± 0.07 µM), enzymes involved in SARS-CoV-2 entry and replication, respectively, as well as antiviral entry and replication properties in an ex vivo system derived from primary human lung tissue. Zinc complexes 1b-h expressed comparable in vitro inhibition. On the contrary, ruthenium complex 2a and the ligand pyrithione a itself expressed poor inhibition in mentioned assays, indicating the importance of the selection of metal core and structure of metal complex for antiviral activity. Safe, effective, and preferably oral at-home therapeutics for COVID-19 are needed and as such zinc pyrithione, which is also commercially available, could be considered as a potential therapeutic agent against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Rutênio , Antivirais/farmacologia , Catepsina L , Humanos , Compostos Organometálicos , Piridinas , SARS-CoV-2
4.
Chem Biol Interact ; 363: 110025, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1906835

RESUMO

In order to discover new dual-active agents, a series of novel Biginelli hybrids (tetrahydropyrimidines) and their ruthenium(II) complexes were synthesized. Newly synthesized compounds were characterized by IR, NMR, and X-ray techniques and investigated for their cytotoxic effect on human cancer cell lines HeLa, LS174, A549, A375, K562 and normal fibroblasts (MRC-5). For further examination of the cytotoxic mechanisms of novel complexes, two of them were chosen for analyzing their effects on the distribution of HeLa cells in the cell cycle phases. The results of the flow cytometry analysis suggest that the proportion of cells in G2/M phase was decreased following the increase of subG1 phase in all treatments. These results confirmed that cells treated with 5b and 5c were induced to undergo apoptotic death. The ruthenium complexes 5a-5d show significant inhibitory potency against SARS-CoV-2 Mpro. Therefore, molecule 5b has significance, while 5e possesses the lowest values of ΔGbind and Ki, which are comparable to cinanserin, and hydroxychloroquine. In addition, achieved results will open a new avenue in drug design for more research on the possible therapeutic applications of dual-active Biginelli-based drugs (anticancer-antiviral). Dual-active drugs based on the hybridization concept "one drug curing two diseases" could be a successful tactic in healing patients who have cancer and the virus SARS-CoV-2 at the same time.


Assuntos
Antineoplásicos , Tratamento Farmacológico da COVID-19 , Complexos de Coordenação , Rutênio , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Rutênio/química , Rutênio/farmacologia , SARS-CoV-2
5.
J Inorg Biochem ; 234: 111880, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1882224

RESUMO

Inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase are central to anti-HIV therapy. Most of their targets are enzymes, while very few could bind to viral RNA. Here we designed four new polypyridyl Ru(II) complexes, which could bind HIV-1 TAR RNA tightly and selectively by molecular recognition of hydrogen bonds, further stabilize the Ru(II)-RNA bound system by electrostatic attraction, and efficiently inhibit the Moloney murine leukemia virus (M-MuLV) and HIV-1 reverse transcriptase. The polypyridyl Ru(II) complexes also have physical and chemical advantages, including high chemical stability and photostability, sensitive spectroscopic responses to HIV TAR RNA, and low toxicity to normal cells. This work also provides valuable drug design strategies for acquired immune deficiency syndrome (AIDS) and other reverse transcriptase related disease research, such as hepatitis C virus (HCV), Ebola virus (EBOV), influenza A virus, and most recently the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Assuntos
HIV-1 , Inibidores da Transcriptase Reversa , Rutênio , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , Humanos , RNA , Inibidores da Transcriptase Reversa/farmacologia , Rutênio/química , Rutênio/farmacologia , SARS-CoV-2
6.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1389381

RESUMO

As SARS-CoV-2 is spreading rapidly around the globe, adopting proper actions for confronting and protecting against this virus is an essential and unmet task. Reactive oxygen species (ROS) promoting molecules such as peroxides are detrimental to many viruses, including coronaviruses. In this paper, metal decorated single-wall carbon nanotubes (SWCNTs) were evaluated for hydrogen peroxide (H2O2) adsorption for potential use for designing viral inactivation surfaces. We employed first-principles methods based on the density functional theory (DFT) to investigate the capture of an individual H2O2 molecule on pristine and metal (Pt, Pd, Ni, Cu, Rh, or Ru) decorated SWCNTs. Although the single H2O2 molecule is weakly physisorbed on pristine SWCNT, a significant improvement on its adsorption energy was found by utilizing metal functionalized SWCNT as the adsorbent. It was revealed that Rh-SWCNT and Ru-SWCNT systems demonstrate outstanding performance for H2O2 adsorption. Furthermore, we discovered through calculations that Pt- and Cu-decorated SWNCT-H2O2 systems show high potential for filters for virus removal and inactivation with a very long shelf-life (2.2 × 1012 and 1.9 × 108 years, respectively). The strong adsorption of metal decorated SWCNTs and the long shelf-life of these nanomaterials suggest they are exceptional candidates for designing personal protection equipment against viruses.


Assuntos
Betacoronavirus/efeitos dos fármacos , Desinfetantes/farmacologia , Peróxido de Hidrogênio/análise , Nanotubos de Carbono/química , Adsorção , COVID-19 , Infecções por Coronavirus/prevenção & controle , Teoria da Densidade Funcional , Desinfetantes/química , Estabilidade de Medicamentos , Humanos , Ferro/química , Ferro/farmacologia , Pandemias/prevenção & controle , Equipamento de Proteção Individual , Platina/química , Platina/farmacologia , Pneumonia Viral/prevenção & controle , Ródio/química , Ródio/farmacologia , Rutênio/química , Rutênio/farmacologia , SARS-CoV-2 , Inativação de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA